
2004-01 -2478

Co n t r o I System Arc h it ect u res, Tech no I og i es, an d
Concepts for Near Term and Future

Human Exploration of Space

Mr. Richard Boulanger
EASI, Inc.

Mr. David Overland
NASA Johnson Space Center

Copyright 0 2004 SAE International

ABSTRACT

Technologies that facilitate the design and control of
complex, hybrid, and resource-constrained systems are
examined. This paper focuses on design
methodologies, and system architectures, not on specific
control methods that may be applied to life support
subsystems. Honeywell and Boeing have estimated that
60-80Y0 of the effort in developing complex control
systems is software development, and only 20-40% is
control system development [l]. It has also been shown
that large software projects have failure rates of as high
as 50-65% [2 ,3] . Concepts discussed include the
Unified Modeling Language (UML) and design patterns
with the goal of creating a self-improving, self-
documenting system design process.

Successful architectures for control must not only
facilitate hardware to software integration, but must also
reconcile continuously changing software with much less
frequently changing hardware (41. These architectures
rely on software modules or components to facilitate
change. Architecting such systems for change
leverages the interfaces between these modules or
components.

INTRODUCTION

Life support systems are difficult to control at best. They
are by nature complex, hybrid systems. Controlling the
life support systems is not a simple task. Previous
systems tests have been successful in only carefully
monitored and controlled environments, very different
from the conditions likely to be encountered during an
actual space mission.

The computer data acquisition and control systems
enabling future human exploration of space must
support multiple missions and, therefore, support the

evolution of both hardware and software technologies. A
modular or component-based architecture for these
control systems is indicated. Using a modular design to
construct a control system doesn’t make it adaptable,
extensible or scalable, however. These factors m-ust be
designed in. An effective design process is critical to
successfully designing and evolving such software
systems.

Two design process techniques are discussed: design
patterns and the Unified Modeling Language (UML).
Design patterns capture and transfer knowledge specific
to a particular problem area. Knowledge is captured in
the form of templates that have been demonstrated
successful to document and store this knowledge for
new designers and programmers. The UML is a
language to specify, construct, visualize, and document
the components, their interactions, and how they are
integrated.

Component-based development differs from object-
oriented development in that a separate component and
interface specification is developed. This means that
intercomponent dependencies can be restricted to
individual interfaces, rather than the whole component
specification. The impact of change is reduced because
one component may replace another as long as the
specification includes the same interfaces.

A component may involve several interfaces; for
example, a controller for an air processor subsystem
could have a component that has interfaces with a
sensor network, a database, and a human interface.
New components are built to existing interfaces, with
new functionality using existing interfaces or providing
new ones. Component-based systems are an effective
way to fast track the integration of research product into
existing test or flight systems.

c

DESIGN PATTERNS

Experts tend to remember past models and designs, and
often solve problems by reusing old solutions in the new
context. In mature engineering disciplines, systems are
commonly developed from these past models,
experiences and designs. Software engineering is now
to adopting architectural level patterns for code reuse.
Key is the adoption of models that capture the design
knowledge, facilitating early analysis of system
properties. One way to capture this knowledge is the
development and use of design patterns.

Design patterns originated with the work of building
architect Christopher Alexander. Alexander refers to
something he called “the quality without a name”, which
he describes as:

“To define this quality ... we must begin by
understanding that every place is given its
character by certain patterns of events that keep
on happening there ... each building and each
town is ultimately made out of these patterns ...
and of nothing else. ... The more living patterns
there are in a place . . . the more. it comes to life as
an entirety, the more it glows, the more it has that
self-maintaining fire which is the quality without a
name. ” [5]

Patterns do not make hard problems simple to solve.
Patterns help people understand complex problems.
They free people from repeatedly solving the easy
problems. Patterns capture existing knowledge, allowing
new solutions to be built on existing solutions.

Patterns are recorded in a format called the Alexandrian
Form. A pattern is both a thing and instructions for
making the thing. The form is particularly useful way to
express patterns. The form looks like this:

The pattern name: A name by which the pattern is
called.
The problem the pattern is trying to solve: This way
people know when to apply the pattern to the
problem they have.
Context: A pattern may solve a problem in a
particular context, but not make sense elsewhere.
Forces or tradeoffs: Not all problems are clear.
Forces clarify problem intricacies. Good patterns
resolve one or more forces.
Solution: Describes the structure, behavior, etc. of
the solution, often detailing how to solve the
problem.
Examples are present in all good patterns.
Force resolution or resulting context a good pattern
describes what it leaves unresolved or what other
patterns must be applied.
Design rationale: This describes where the pattern
came from, why it works, and why it is used.

Figure 1. An example design pattern.

Design patterns have been applied to fault-tolerant
telecommunication systems. Two unique characteristics
of telecommunications software that coincide with
Advanced Life Support control software are reliability
and human factors, making them good candidate
patterns for further investigation. One of these patterns
is presented as an example in Figure 1, above. [6]

Patterns are not, however, a silver bullet. Most patterns
affect software design, with no quantifiable effect on
lines of code. Patterns capture existing, well-proven
design experience. Patterns should look familiar,
especially to senior programmers and designers. A
written pattern gives a non-expert designer, someone

’ f o o l Me Once IS a pattern which llrntts the ablllty of an appllcatlon to
cause a system restart to a single occurrence

new to the control of ALS systems, some reusable
building blocks for software development. Patterns
capture the most important information that must be
passed on to the next generation of designers and
programmers.

THE UNIFIED MODELING LANGUAGE

The Unified Modeling Language (UML) is the industry
standard for modeling and documenting object-oriented
systems. It describes a standard set of notations and
diagrams that describe object-oriented systems and it
describes what those symbols mean. The UML is a
process by which a designer (e.g. a controls system
developer) and a customer (e.g. a life support system PI)
can reach mutual understanding of how a subsystem is
designed to operate, nominally, off-nominally and failure
modes. Application of the UML to a control system
design problem begins a dialog between software and
hardware designers, the result of which peels back the
layers of knowledge the hardware designer possesses,
and allows that knowledge to be documented in a clear,
concise manner which control systems programmer and
designers can understand and translate into effective
code.

Using the UML to develop of a control system produces
several artifacts. These artifacts describe how the
control system operates, how humans and other parts of
the systems interact with control system, how the
system’s various components interact, and what
components are required. These artifacts are called,
respectively, the Concept Model, Use Case Models,
Component Specification, and the Components.
Artifacts are developed iteratively, as shown in figure 2,
below.

Creation of the specification artifacts is tricky since
various artifacts have clear dependencies. Workflow
tasks can be summarized into three stages: component
identification, component interaction, and component
specification. In all of the stages, component refers to
both the component and its interface(s). Figure 3, right,
shows the process, interactions, product inputs and
artifact outputs. The process is iterative: each of the
processes shown is executed concurrently.

I CornDonenis

First Iteratior

Second Iteration Fourth llembon

Figure 2. UML artifact development is an iterative
process.

Existing
Interlaces

Exisling
Assels

Conirol System Use Case
Conceptual Model Models

t
Inledaces Componenl Specs

d Architecture

Figure 3. Workflow diagram for developing
component-based control systems.

COMPONENT IDENTIFICATION - The component
identification stage takes as input the control system
conceptual model and use case models. The goal of
this part of the process is to identify the initial
components and set of interfaces for the control system.
Together with design patterns and existing assets, (e.9.
communication standards, databases, hardware, etc.)
these are then used to construct the initial control
system. The initial cut at the components can be very
broad at this point. They will be refined as the process
continues and iterates. The operations that the control
system must perform should be identified a? this point,
which defines the initial interfaces the system will
require.

COMPONENT INTERACTION - The component
interaction stage uses interaction models to discover
control system operation. As more interactions are
considered, common operational modes and usage
patterns will emerge. Operations can be moved from
one component to another, clarifying the interface
responsibility. The goal here is to minimize the
dependencies between component objects. Details of
the control system structure emerge during this process,
with a clear understanding of the interaction between
components.

COMPONENT SPECIFICATION - The final stage is
component specification. At this point, detailed
operations and constraints are defined. What conditions
must be exist prior to and after each component

operation are defined. This helps determine missing
parameters, missing information, wrong assumptions,
etc.

UML MODELING TECHNIQUES - The UML utilizes
several notations to diagram the artifacts that it
produces, The UML uses the term model to refer to
specific types of diagrams that represent specific system
abstractions. These diagrams represent concepts of
how information flows though a system, how users
interact with the system, and how components interact
with each other. There are three basic types of
diagrams for modeling component-based control
systems using the UML: use-case diagrams, class
diagrams and collaboration diagrams.

CONCEPT MODEL - The control system conceptual
model is not a model of software, but rather a model of
the information that exists in the problem domain, Le. a
model of the process by which a life support system
operates. The purpose of the conceptual model is to
capture concepts and define relationships. These
concepts and relationships are then used to define the
components necessary to adequately and completely
control the system in any state.

CLASS DIAGRAMS - Class diagrams describe the
static structure of a system. Classes are depicted as
rectangles divided into compartments for name,
attributes, and operations. The relationship between
classes is shown using associations and cardinality.
Associations are lines from class rectangle to class
rectangle that show there is a static relationship between
the two classes. Cardinality is a notation that shows
multiplicity between cases. For example, figure 4 shows
a class that represents the information that might be
contained in a database of process control data.

L

timestamp: Time
contains comment: Strin

I I

lL&Ljy;
eventName: Strin

timestamp Time
contains

Figure 4. Example class diagram.

USE CASE DIAGRAMS - Use case diagrams model
how the user interacts with the system. The participants
in a use case are actors and the system. An actor is an
entity that interacts with the system, typically a user. An
actor can be another system, but, if it is, the details of
that system are hidden - we simply see a predictable
“person”. One actor is always defined as the initiator.
The other actors (if any) are used by the system to meet
the initiator’s goal. In a use case, the actors interact with
the system as a whole, not some part of it. It is also
important to note that the method the actor uses to
communicate with the system is of no concern, whether
it is a graphic user interface, an Internet connection, or a
control panel button.

It should also be pointed out that the purpose of the use
case is to meet the immediate goal of the actor. This
leads to a commonly occurring problem with use case
diagrams: scope and size. There is no consensus on
the issue; however, a first approximation is to make the
use case smaller than the conceptual model process but
larger than a single component operation. The purpose
of the use case is to meet the immediate goal of the
actor, be it changing a control set point or checking
material stores. It will include everything that can be
done now by the system to meet the goal.

COLLABORATION DIAGRAMS - The rectangles in
these diagrams represent component objects that
support the interfaces that are shown. Since it is
possible (even likely) for components to support more
than one interface, there may be two or more rectangle
for some components. The links are instances of the
interfaces shown unless they are transient: existing only
as long as the collaboration between the two
components occurs.

ARCHITECTURES

The control system architecture is the principal means
by which change to a system is effected. Modern control
system architectures are made up of networked sensors,
actuators and software components, at various levels,
which, together, effect change in that system.
Regardless of complexity, the basic system consists of a
sensed value, an algorithm for determining sensed value
goodness, and an actuator for changing the system state
based on that measure of goodness.

Control system architectures are typically hierarchical or
heterarchical. Hierarchical systems are characterized by
a controller that is located at the top of a hierarchy of
sensors, actuators and passive algorithms. Sensor input
data flows up the hierarchy to the controller, which
issues commands that flow down to the actuators. A
network of sensors and actuators that cooperate to
achieve system wide goals characterizes heterarchical
systems.

%

Control system software for advanced life support is
distributed across the processors and subsystems that
comprise the system. Currently, the developer of each
physico-chemical or biological processor is responsible
for developing the software needed to run her
equipment. In the near future, this process will have to
change. To give a control system the highest degree of
flexibility with which to succeed, it needs to have access
to all the sensed inputs and actuators that are available
to it. The control system software needs to be able to
detect a condition by reaching down, into a hardware
designer’s equipment, diagnose that condition, and then
reach down again, possibly into another designer’s
equipment, and effect the change necessary to correct
the situation. The process by which equipment is
supplied to NASA today does not allow this to occur.

The ability to change and evolve must be designed into
the software we use to control the life support hardware.
Faili,ng that, there must be a cohesive, effective way to
encapsulate these subsystem controllers, allowing
access to their data and actuators until there is such a
standard interface.

_COMPONENT-BASED

Component-based control systems utilize interactive
software abstractions called components. These
abstractions possess three attributes: stored knowledge
or data, the ability to process knowledge or function, and
the means to share knowledge or interfaces. By
judiciously determining the interfaces which components
share, component dependencies are created. These
dependencies determine to a large extent the type and
number of components required by the system.
Definition of a common interface and building to that
interface allows future work to increase functionality,
while maintaining backwards compatibility. Components
can be extended to include additional functionality as
long as the interface’s original functionality is left intact.
Components are the basic building blocks of modern,
extensible, evolvable control systems.

RECONFIGURABLE

A reconfigurable control system is a component-base
control system where the components can be changed
in real-time. For example, a model-based controller with
a relatively large time step is controlling a water
processor. The large time step is used to reduce
computer overhead in situations where the model
predictive accuracy is not that critical. However, if
sensors indicate, a more accurate (and more computer
intensive) model could be substituted on the fly,
adjusting is a more controlled manner the trajectory of
the water processor.

technologies as well as proven alternatives into the
control mix. Imagine a system that is disparate,
comprised of scattered processors, simulations and
controllers. Imagine that this conglomeration of
hardware and software shares a common set of
interfaces and that components of the system can be
switched in and out at will. The system can be
configured to run a ground-based simulation of an
advanced life support mission or the system could be the
mission itself, with ground expertise, simulations and
alternate control strategies to the spaceflight hardware.

CONCEPTS

It is likely that future spaceflight hardware and software
will utilize separate spiral development cycles. This will
inevitably lead to a circle-spiral process model, with
stable systems being represented by circles, and
iterative development proceeding along spiral paths
approaching those circles. The stable configurations
can be software release levels, architectural frameworks,
or hardware configurations. One problem with designing
a process for integration is doing the hard part first. The
evolutionary nature of software implies that, given this
heuristic, the hard parts of the software should be
designed first. Given what is know about schedule risks
and software, this may seem obvious to the casual
observer, but it is often difficult glven pressures to
produce interface demonstrations and so forth. Reliable
control of advanced life support processes, therefore,
needs to be effectively demonstrated prior to creation of
sharp looking interfaces. Given that a reliable control
demonstration is the first order of business, suitable
hardware or a hardware analog must be available for
control system software to succeed.

Two mechanisms for management of change are to
implement improvements in the form of large portions of
the system, so-called large lump development, or to
implement smaller, continuous growth, or so-called
piecemeal growth. Large lump development is relatively
static, with change often occurring in leaps based on
external influences to the system. Piecemeal growth is
more dynamic, typically in response to internal system
influences. Both mechanisms have a place in control
systems design. Implementation of new technologies
that fundamentally change the way a control system
operates is an example of large lump development.
Whereas piecemeal growth may be as simple as
developing a replacement component that utilizes a new
network interface or service.

Management of change is the most important priority to
any long-term software project. Successfully managing
change reduces risk of project schedule slip or failure. It
also quantifies schedule progress, allowing accurate
assessment of effort required.

The ability to reconfigure a control system in real-time
provides a valuable tool for integrating new control

CONCLUSIONS CONTACT

In 2001, an estimate was made of the size of the facility
control system for a human-rated test bed call the BIO-
Plex. The estimate was based on the assumptions that
a component-based control system would be used and
that no “high-level” or autonomous control was part of
the facility control system. The estimate was on the
order of 10,000 function points. Projects of this size
have failure rates on the order of 50 percent.

Since that estimate was made, the test facility has grown
in scope, to include more diverse elements such as
human factors, food processing, and advanced
environmental monitoring and control. The probability of
success for the control system software design and
implementation has not decreased, however.

Only by successfully managing the design for change
will these efforts succeed. So we stand at a crossroads:
do we design using the technology of today, the same
technology that brought us to the moon before, or do we
incorporate new discoveries, new technologies as they
are proven and made available? The choice is ours to
make. Where one path supports a human presence in
space, the other will leave only leave footprints.

REFERENCES

1.
2.

3.

4.

5.

6.

7.

8.

Honeywell, Boeing reference
Jones, Capers T., “Estimating Software Costs”,
McGraw-Hill, 1998. (ISBN 0-07-913094-1, 724

Boulanger, R., D. Overland and H. Jones
“Evaluation of Fieldbus and Software Component
Technologies for Use with Advanced Life Support”,
31”‘ Intl. Conf. On Environmental Systems (ICES),
SAE Technical Paper No. 2001 -01 -2299.
Rechtin, Eberhardt and Mark W. Maier, “The Art of
Systems Architecting”, CRC Press, LLC, 1997.
(ISBN 0-8493-7836-2, 266 pages)
Alexander, Christopher, “The Timeless Way of
Building”, Oxford University Press, 1979. (ISBN
01 95024028,568 pages)
Jones, Capers T., “Software Assessments,
Benchmarks, and Best Practice<, Addison-Wesley,
2000. (ISBN 0-201 -48542-7,657 pages)
Rising, Linda, ed., “The Patterns Handbook:
Techniques, Strategies, and Applications”,
Cambridge University Press, 1998. (ISBN 0-521 -
6481 8-1, 549 pages)
Cheesman, John and John Daniels, “ U M L
Components: A Simple Process for Specifying
Component-Based Software”, Addison-Wesley,
2001. (ISBN 0-201 -70851 -5, 176 pages)

pages)

Mr. Richard Boulanger
EAS I
NASA Ames Research Center
MIS 239-8
Moffett Field CA 94035-1 000
Voice: 650.604.141 8
Facsimile: 650-604-1 092
rboulanaer @ mail.arc.nasa.aov

Mr. David Overland
NASA Johnson Space Center
Mail Code ER2
Houston TX 77058
Voice: 281.483.4304
Facsimile: 281.483.3204
david.overland- 1 @ nasaaov

